[Go to first, previous, next page]

Chapter 6

Recursion

A procedure body can contain calls to other procedures, not least itself:

(define factorial
  (lambda (n)
    (if (= n 01
        (* n (factorial (- n 1))))))

This recursive procedure calculates the factorial of a number. If the number is 0, the answer is 1. For any other number n, the procedure uses itself to calculate the factorial of n - 1, multiplies that subresult by n, and returns the product.

Mutually recursive procedures are also possible. The following predicates for evenness and oddness use each other:

(define is-even?
  (lambda (n)
    (if (= n 0#t
        (is-odd? (- n 1)))))

(define is-odd?
  (lambda (n)
    (if (= n 0#f
        (is-even? (- n 1)))))

6.1  letrec

If we wanted the above procedures as local variables, we could try to use a let form:

(let ((local-even? (lambda (n)
                     (if (= n 0#t
                         (local-odd? (- n 1)))))
      (local-odd? (lambda (n)
                    (if (= n 0#f
                        (local-even? (- n 1))))))
  (list (local-even? 23) (local-odd? 23)))

This won't quite work, because the occurrences of local-even? and local-odd? in the initializations don't refer to the lexical variables themselves. Changing the let to a let* won't work either, for while the local-even? inside local-odd?'s body refers to the correct procedure value, the local-odd? in local-even?'s body still points elsewhere.

To solve problems like this, Scheme provides the form letrec:

(letrec ((local-even? (lambda (n)
                        (if (= n 0#t
                            (local-odd? (- n 1)))))
         (local-odd? (lambda (n)
                       (if (= n 0#f
                           (local-even? (- n 1))))))
  (list (local-even? 23) (local-odd? 23)))

The lexical variables introduced by a letrec are visible not only in the letrec-body but also within all the initializations. letrec is thus tailor-made for defining recursive and mutually recursive local procedures.

6.2  Named let

A recursive procedure defined using letrec can describe loops. Let's say we want to display a countdown from 10:

(letrec ((countdown (lambda (i)
                      (if (= i 0) 'liftoff
                          (begin
                            (display i)
                            (newline)
                            (countdown (- i 1)))))))
  (countdown 10))

This outputs on the console the numbers 10 down to 1, and returns the result liftoff.

Scheme allows a variant of let called named let to write this kind of loop more compactly:

(let countdown ((i 10))
  (if (= i 0) 'liftoff
      (begin
        (display i)
        (newline)
        (countdown (- i 1)))))

Note the presence of a variable identifying the loop immediately after the let. This program is equivalent to the one written with letrec. You may consider the named let to be a macro (chap. 7) expanding to the letrec form.

6.3  Iteration

countdown defined above is really a recursive procedure. Scheme can define loops only through recursion. There are no special looping or iteration constructs.

Nevertheless, the loop as defined above is a genuine loop, in exactly the same way that other languages bill their loops. I.e., Scheme takes special care to ensure that recursion of the type used above will not generate the procedure call/return overhead.

Scheme does this by a process called tail call elimination. If you look closely at the countdown procedure, you will note that when the recursive call occurs in countdown's body, it is the tail call, or the very last thing done -- each invocation of countdown either does not call itself, or when it does, it does so as its very last act. To a Scheme implementation, this makes the recursion indistinguishable from iteration. So go ahead, use recursion to write loops. It's safe.

Here's another example of a useful tail-recursive procedure:

(define list-position
  (lambda (o l)
    (let loop ((i 0) (l l))
      (if (null? l#f
          (if (eqv? (car loi
              (loop (+ i 1) (cdr l)))))))

list-position finds the index of the first occurence of the object o in the list l. If the object is not found in the list, the procedure returns #f.

6.4  Mapping a procedure across a list

A special kind of iteration involves repeating the same action for each element of a list. Scheme offers two procedures for this situation: map and for-each.

The map procedure applies a given procedure to every element of a given list, and returns the list of the results. E.g.,

(map add2 '(1 2 3))
=> (3 4 5)

The for-each procedure also applies a procedure to each element in a list, but returns void. The procedure application is done purely for any side-effects it may cause. E.g.,

(for-each display
  (list "one " "two " "buckle my shoe"))

has the side-effect of displaying the strings (in the order they appear) on the console.

The procedures applied by map and for-each need not be one-argument procedures. For example, given an n-argument procedure, map takes n lists and applies the procedure to every set of n of arguments selected from across the lists. E.g.,

(map cons '(1 2 3) '(10 20 30))
=> ((1 . 10) (2 . 20) (3 . 30))

(map + '(1 2 3) '(10 20 30))
=> (11 22 33)

[Go to first, previous, next page]